پیش بینی سری های زمانی آشوب با استفاده از یادگیری عاطفی- هیجانی مغز

thesis
abstract

در این تحقیق ما قصد داریم سری¬های زمانی آشوب¬ناک را با استفاده از مجموعه¬ی داده¬های ورودی- خروجی که داریم پیش¬بینی کنیم. این مسئله با استفاده از داده¬های گذشته و فعلی به پیش¬بینی مقادیر آینده می¬پردازد. ما قصد داریم از روش جدید یادگیری عاطفی مغز پستانداران برای پیش¬بینی استفاده کنیم. اساس این روش برپایه مدل مورن است که در بخش ورودی قسمت تالاموس آن از چند ورودی استفاده کرده¬ایم، زیرا در مدل واقعی مغز پستانداران این ورودی یکتا نیست. با شبیه¬سازی این روش نشان خواهیم داد که مدل تغییریافته در مقایسه با روش¬های قدیمی مانند شبکه¬های عصبی و شبکه فازی- عصبی سوگنو خطای کمتری دارد.

similar resources

پیش بینی تورم با استفاده از رهیافت سری های زمانی

امروزه، پیش­بینی متغیرهای کلان اقتصادی از جمله نرخ تورم، از اهمیت ویژه­ای برای سیاستگذاری و برنامه ریزی های اقتصادی برخوردار شده است. در این راستا در دهه های اخیر، مدل­های پیش­بینی گوناگونی برای نرخ تورم مطرح شده اند. در این مقاله، با استفاده از سری زمانی نرخ تورم اعلام شده از سوی مرکز آمار ایران (از اسفند ۱۳۸۲ تا آذر ۱۳۹۳)،  مدل (۲،۲،۳)arima انتخاب شد. بعد از تصریح مدل، ابتدا پیش بینی درون نمو...

full text

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

full text

پیش بینی بار کوتاه مدت با استفاده از تجزیه سری زمانی بار وشبکه عصبی

چکیده پیش بینی بارکوتاه ‌مدت یک فرآیند پایه در بهره برداری سیستم‌های قدرت محسوب می‌شود. بسیاری از توابع بهره‌برداری نظیر آرایش تولید، پخش بار اقتصادی، ارزیابی ایمنی و هماهنگی آبی حرارتی به پیش‌ینی بار کوتاه‌مدت وابسته می‌باشند. در طی سه دهه اخیر روش های مختلفی برای پیش‌بینی بار کوتاه ‌مدت ارائه شده و نرم‌افزارهای صنعتی متعددی نیز بر پایه این روش ها تهیه شده‌اند. از جمله این روش ها می‌توان به ان...

full text

پیش بینی دبی جریان رودخانه با استفاده از داده کاوی و سری زمانی

شبیه­سازی جریان رودخانه به‌منظور آگاهی از دبی رودخانه در دوره‌های زمانی آینده از مسائل مهم و کاربردی است. با توجه به اهمیت اطلاع از دبی جریان در سال­های آینده، در این مطالعه دبی جریان در سه ایستگاه حاجی‌قوشان، قره‌شور و تمر در حوضۀ آبخیز گرگانرود برای سال­های آبی 90-1381 شبیه­سازی شد. به‌منظور شبیه­سازی از روش آماری سری زمانی در قالب الگوی اتورگرسیون (AR) و داده‌کاوی در قالب ماشین بردار پشتیبان...

full text

پیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی

امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...

full text

پیش بینی استهلاک فرآیند ماشینکاری AL7075 با استفاده از سری زمانی

در این مقاله، روشی جدید برای پیش بینی دقیق نیروهای برش و تعیین بافت سطح قطعه کار تولید شده در عملیات  فرزکاری با بار جانبی کم ارائه می‌گردد. در روش پیشنهادی، نسبت میرایی  فرآیند در خارج از منطقه برش توسط روش تحلیل مودال تجربی تعیین شده و برای تعیین دقیق نسبت میرایی فرآیند در داخل منطقه برش از تکنیک های روش تحلیل سری زمانی استفاده شده است. با استفاده از دیاگرام جمع همبستگی، مقایسه‌ای بین سیگنال ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه تربیت معلم - تهران - دانشکده برق و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023